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Abstract. A partial description of Earth's broad scale, core-source magnetic field has been developed
and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that

is approximately inversely proportional to horizontal wavenumber atop Earth's core (Stevenson, 1983;

McLeod, 1985; 1996). This multipole spectrum describes a magnetic energy range; it is not steep enough

for Gubbins' (1975) magnetic dissipation range. Temporal variations of core multipole powers about mean

values are to be expected and are described statistically, via trial probability distribution functions, instead

of deterministically, via trial solution of closed transport equations. The distributions considered here are

closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and

tested against, both dipole and low degree non-dipole fields.

In Part I, a physical basis for an expectation spectrum is developed and checked. The description is

then combined with main field models of twentieth century satellite and surface geomagnetic field

measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7%

above the 3480 km seismologic value. Partial descriptions of other planetary dipole fields are noted.

1 INTRODUCTION & BACKGROUND

The primary physical source of the geomagnetic field is widely held to be electric current flowing in

Earth's electrically conducting, ferro-metallic liquid outer core and solid inner core. Other sources include

weaker current in the resistive, ferro-magnesian silicate and oxide mantle, magnetization in the colder crust,

electric current in the saline hydrosphere, and external currents in the ionosphere above and magnetosphere

beyond. Solenoidal magnetic induction B within the source regions can be represented mathematically via

poloidal and toroidal scalars (see, e.g., Backus, 1986). On and above Earth's roughly spheroidal surface,

however, the field of deep internal origin can be represented by the negative gradient of a scalar potential V

that satifies Laplace's equation (B ----VV, V2V = 0). At time t and position r in geocentric spherical polar

coordinates (radius r, colatitude 0, and east longitude _), the spherical harmonic expansion of zero mean V

is well-known to be

(a/r)n+ 1 nV(r,t) = a Y_ E [gnm(t)cosm_ + hnm(t)sinm_]Pnm(cos0), (1)
n=l m=0

where Pnm is the Schmidt-normalized associated Legendre function of degree n and order m, and [gnm(t),

hnm(t)] are Schmidt-normalized Gauss coefficients at reference radius a, here taken to be 6371.2 km.

Gauss coefficients have long been estimated by a weighted least squares fit to measured geomagnetic

data (see, e.g., Langel, 1987). This usually requires truncating the sum over degrees at finite N. Accurate

statistical information about Gauss coefficients could supplement such regularizing truncation, increase the

accuracy of estimated coefficients, and improve the reliability of associated uncertainty estimates (Gubbins,



1983;McLeod,1986; Backus, 1988). Lacking sufficient prior information, a statistical hypothesis may be

advanced and tested against observations. The physical significance of such tests depends upon the

physical basis of the hypothesis tested. Discrepancies between theory and observation often lead to more

accurate hypotheses and measurements. So let us consider such hypotheses, develop their theoretical

predictions, and test the predictions against geomagnetic and paleomagnetic observations.

Many hypotheses concern the internal spatial geomagnetic power spectrum, denoted via Rn. Lowes

(1966) and others (see Cain et al., 1989) show the mean square potential field represented by spherical

harmonics of degree n, averaged over a spherical shell of radius r enclosing the sources, to be

Rn(r,t) = (n+ 1)(a/r) 2n+4 _ ([gnm(t)] 2 + [hnm(t)]2). (2)
m--0

For vacuum magnetic permeability l.to, the magnetic energy per unit shell thickness due to an equivalent,

geocentric, nth degree multipole source equals 2rcr2Rn/l.to. The latter form a discrete spectrum with units

of spatial power or force. "Multipole powers" Rn have SI units of (Tesla) 2 and collectively sum to the

mean square field on the shell. Invariant under coordinate rotations, but not translations, the R n offer

isotropic, inhomogenous measures of an evidently anisotropic and heterogenous field. The spatial power

spectrum of the secular variation, denoted Fn(r,t), is obtained by replacing the Gauss coefficients in (2) with

secular variation (SV) coefficients (_tgnm, Othnm); note Ot2Rn # Fn # OtRn"

Multipole powers Rn(a,1980) computed from coefficients fitted to Magsat data are interpreted in

terms of a predominantly core-source spectrum Rnc for n < 12 and a predominantly crustal-source

spectrum Rnx for n >_16 (Langel & Estes, 1982). Corrections for lithospheric magnetization and finite

mantle resistivity are arguably small only at low degrees and long periods, respectively; therefore, to ease

description of a field originating in a core of mean radius c, use of (2) is here limited to n _<12, super-

annual SV, and r _>c. Seismologic estimates of c vary, but are denoted cs = 3480 km (Dziewonski &

Anderson, 1981; Kennet, Engdahl & Buland, 1995).

Several functional forms have been suggested for Rnc. The theoretical core=source geomagnetic

spectrum of McLeod (1985; 1996 equation 20a) earns special attention, not only becasue it can be closely

fitted to observational Rn, but because it was obtained from consideration of advective and diffusive effects

on a core field. McLeod's rule states that the spatial magnetic power spectrum of the core-source field,

Rnc(a), is approximately proportional to (n + l/2)-l(c/a) 2n for finite degrees 2 < n <__N'. Here we advance

and test the hypothesis that this form approximates geologically long time average (over -50 Myr), or

expectation, multipole powers {Rnc} throughout a finite magnetic energy range 1 <_n < N E. Evidently,
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NE > 12. Natural fluctuations about such mean values are to be expected from time-dependent magnetic,

mass, momentum and energy transport within Earth's core. Over longer time intervals, changes in outer

core boundary conditions, composition, and stratification may change {Rnc } itself.

In Part I, after summarizing some previous work with the spectrum, a simple physical model of the

core-mantle boundary region is used to develop an expected core multipole spectrum. The model features

laterally decorrelated magnetic transport beneath a thin viscous sub-layer. This specifies the form of SV

spectrum {Fnc}. A relation between effective radial wavenumbers and horizontal wavenumbers in the

vertical field component is needed to specify {Rnc}. One such relation is advanced and tested against

observational spectral ratios with satisfactory results. It yields an expected spectrum similar to McLeod's.

A trial distribution function for Rnc is advanced and discussed, mainly to guide the paleomagnetic

predictions and tests presented in Part II. Geomagnetic predictions of the mean radius of Earth's core based

on McLeod's rule are then tested against seismologic values and found to be quite accurate.

2 SOME PREVIOUS SPECTRAL FORMS

Exponential Spectra. The geometric attenuation factor, (a/r) 2n+4 in (2), is a power law in radius;

yet it is exponential in degree. Following Lowes (1974), Rn(a) has often been approximated by the

exponential A*(c*/a) 2n+4. Linear regression through observational values of log[Rn(a)] gives

log[-Rn(a)] = [21og(c*/a)]n + [log(A*)+ 41og(c*/a)]. (3)

The slope of this line implies the radius c* at which downwardly continued spectrum Rn(a)[a/r]2n+4,

denoted Rn(r ), would appear independent of n. A graph of log[Rn(r)] as a function of n is a straight line

that "levels off" at r -- c*. If Rn(r) were extrapolated to arbitrarily high degree, then its sum over n would

diverge at r < c*; therefore, such extrapolation is physically invalid at r _<c*. This might be due to failure

of the potential field representation, so c* might be the minimum radius of a sphere containing the sources.

Lowes' (1974) spectrum, fitted to degrees 1 through 8, levels off about 480 km below cs. Modem dipole

powerR 1 exceeds R 1 as well as higher multipole powers; it has often been excluded from subsequent

regressions, which raises c towards cs.

Langel & Estes (1982) interpret Rn(a) from their degree 23 model MGST 10/81 of Magsat data in

terms of dominant core dipole, core non-dipole (2 _<n _<12), and crustal fields (n >_16). Their non-dipole

core spectrum Rnc levels off 174 km below cs. Their crustal spectrum Rnx levels off 83 km below a.

Voorhies (1984) used only the mean square radial field component per harmonic degree from model

*2
MGST 10/81, which is (n+l)Rn/(2n+l). His non-dipole core spectrum Brc (n) levels off 200 km below c s
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and was used to argue against narrow scale, intensely magnetized core spots at the core-mantle boundary.

*2
His crustal spectrum Brx (n) levels off 9.9 km below a, perhaps suggesting crustal rather than deep

lithospheric sources. About 10% of RI2 was considered crustal in origin.

Cain et al. (1989) used their degree 63 numerical integration model M07AV6 of Magsat data to

obtain a non-dipole core spectrum that levels off73 km below Cs;a crustal spectrum that flattens out 14 km

below the reference sphere; and a satellite altitude noise level•

Constable & Parker (1988) chose a non-dipole spectrum which is exactly flat at the core surface to

guide construction of a statistical model of Gauss coefficients. Except for the manifestly anisotropic dipole,

and perhaps quadrupole, normal probability distribution functions (PDFs) with m-independent variances

were assigned to the coefficients. The n-dependent variances were obtained from a level spectrum at cs

fitted to observational R n of model GSFC 9/80 (Langel, et al., 1982). The model passed a Kolmogorov-

Smirnoff test for degrees 2-8.

ii

Hulot, LeMouel & Wahr (1992) inferred a non-dipole core spectrum that levels off about 235 km

below cs. The stationary isotropic statistical model of Hulot & LeMouel (1994) also assigns normal PDFs

with m-independent variances to non-dipole Gauss coefficients. Variances obtained from Rnc decrease

quite rapidly with n due to the depth of c* below cs. They also offer impressive non-dipole Kolmogorov-

Smirnoff test results, note that isotropic models give chi-squared PDFs for normalized non-dipole powers,

and further suggest a PDF for the axial dipole coefficient that combines two Gaussian distributions: one for

normal and one for reversed polarities (see McFadden & McElhinny, 1982).

The statistical models cited above allow for the dominant geometric attenuation of Rnc(r) with radius

and seem to offer unobjectionable, albeit different, statistical hypotheses. Yet physical reasons to expect

non-interdependent Gauss coefficients, isotropy, equal degree variances at some radius c , and a purely

exponential spectrum - all while granting special exemptions to the axial dipole - are elusive.

For example, with magnetic permeability I.t and electric conductivity o simply treated as if uniform in

a spherical fluid outer core moving at velocity v(r,t), analysis of the well-known induction equation,

OtB = Vx(vxB) + (po)-IV2B , (4)

indeed shows that magnetic diffusion of different spherical harmonic modes proceeds independently; yet

poloidal and toroidal magnetic modes are cross-coupled bY heterogeneous fluid motion - the motion

needed to maintain a core-source field against resistive decay of its source currents over geologic time via

dynamo action (see, e.g., Larmor, 1919; Elsasser, 1946; Gubbins & Roberts, 1987). Moreover, Earth's
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present dipole is evidently anisotropic and has power far greater than obtained by extrapolating the

foregoing exponential spectra to the first degree. Furthermore, no firmly established, fully developed

statistical theory of conceivably turbulent core magnetohydrodynamic transport appears to demand equal

mean magnetic pressure per harmonic degree at radius c* (level Rn(C*)) instead of, say, equal total

magnetic energy outside the core per harmonic degree and order (level (n+ 1)(2n+ 1)Rn(C)), equal mean

radial gradient in magnetic pressure per harmonic degree atop the core (level Rn(C)/(n+2)), or some other

spectral form at degrees below 13. Alternatives to a purely exponential spectrum, and to statistical

presumption of isotropy, independence, and normally distributed coefficients, are available and have been

used to describe geo-paleomagnetic field behavior.

* >Power Law Spectra by the Core-Mantle Boundary. The exponential decay of Rn(r _ cs > c*) with

n is faster than needed for finite mean magnetic energy density (faster than n "l-e with e > 0). Indeed, the

finitude of Ohmic dissipation within the core and Gubbins' (1975) famous expression for the minimum

value thereof imply that, for degrees in a magnetic dissipation range defined by n >_ND,

Rnc(a ) < KG n-2-_ (c/a) 2n , (5)

where KG is a constant and _5> 0. Though f'mite, ND might be very much greater than 12.

Much work on idealized hydromagnetic turbulence has considered the magnetic energy spectrum

E(k) as a function of Cartesian wavenumber k (see, e.g., Gubbins, 1974; Pouquet, Frisch & L6orat, 1976;

Moffat, 1978; Krause & Radler, 1980). Although the proportionality E(k) ct k"3/2 is indicated for the

inertial subrange of three-dimensional, homogeneous, isotropic, incompressible hydromagnetic turbulence,

Pouquet et al. (1976) found that kinetic helicity injection leads to an inverse cascade of magnetic helicity

and E(k) a k "1 at low k. Citing these findings, Stevenson (1983) suggested that a power law spectrum is

possible - albeit difficult to apply due to anisotropy. His arguments indicate k-1 and he noted some

similiarity between an n-1 speclrum and observational Rn downwardly continued to radius 0.55a for n < 8.

Define horizontal wavenumber khn _- [n(n+l)/c 2] 1/2 via the surface Laplacian. If E(k) a k"l, if

E(k) a {Rnc(C)}, and if k2 ct khn2, then {Rnc(C)} ct k-1 et [n(n+l)] -I/2. The latter form is closer to

McLeod's (n + 1/2)-1 than Stevenson's n-1 relation, notably at degrees 1 and 2.

Gubbins & Bloxham (1985) discuss solution norms for supplementary reguladzation of core-source

field models. Each such norm corresponds to a downwardly continued spectrum that is inversely

proportional to a polynomial of n. Norms compatible with (5) are needed for n _>N D. Solution norms may

also be used to construct a smooth, or damped, core field models for n < N D (see also Shure, Parker &
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Backus (1982); Langel (1987); and Backus (1988)). Such models have many uses; however, a desire for a

smooth model ought not be mistaken for measured data. To avoid built-in assumptions about c or Rnc,

smoothed field models are not used in this paper.

McLeod's (1985; 1994, 1996) theoretical core-source spectrum for degrees 2 _<n _<N' is written

Rnc(a) _ RncM(a) -- KM (n + 1/2)"1 (c/a)2n, (6)

where K M = 5× 109 nT 2. The downwardly continued spectrum RnM(r) is proportional to (n + 1/2)" 1 at the

core surface; there is no radius at which it levels off. McLeod (1996) derived (6) from functional forms of

(i) the core-source SV spectrum Fnc and (ii) the temporal geomagnetic power spectrum Pn(O_) that depends

upon temporal frequency to as well as harmonic degree. The form of Fnc is akin to that caused by random

lateral advection of magnetic field lines at the top of a high conductivity liquid core. The form of Pn(to) is

appropriate to a two time-scale model of the two processes, magnetic flux diffusion and fluid motion, that

change the core field according to the induction equation (4).

Voorhies & Conrad (1996) questioned the existence of physical sources giving a level spectrum, the

exclusion of dipole power from estimates of Rnc, and the idea that N D < 14. Examination of the spectrum

from the degree 60 Magsat model MI02189 of Cain, Holter & Sandee (1990) confirmed that dipole power

is large, and quadrupole power is small, compared with a trend at degrees 3-12. This was thought to be an

artifact of geologic undersampling: values for R 1 and R2 at 1980, being calculated from but 3 and 5 Gauss

coefficients respectively, could be fairly far from multi-million year mean values. If so, perhaps a key to

past dipole behavior can be found in present higher degree multipoles. We tried the power law form at cs

(Rn_'(Cs) = K7 n'7) by fitting a linear function of In(n) to ln[Rn(cs)] for degrees 3-12. We found 2, to be

0.94. Crustal sources may lead to a slight underestimate of 7, so we set 7 to 1, estimated K7 alone, and

found the summed squared residuals per degree of freedom to be less than when 3'and K7 were coestimated.

Moreover, the extrapolation to dipole power appeared much more satisfactory than for a plain exponential

form. With neither theoretical nor experimental reasons to assume a level spectrum at either cs or c , and

seeing fair predictions for R 1 and R2, we learned to expect a core-source spectrum of the form

Rnc(r,t ) -- {Rnl(r)} = K 1 n-1 (c/r) 2n+4 (7)

for 1 < n < N E, where the curly brackets represent expectation value and NE is the finite, maximum degree

of the magnetic energy range (1 < NE < ND). Whether or not a Stevenson (1983) relation like (7) describes

multi-Myr means, it does not specify changes in c, 7, or K7 due to planetary evolution over several Gyr.
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If (7) accurately describes the time-averaged core-source field, then natural deviations [Rnc(t) -

{Rnc}] eventually relax to zero and perhaps change sign. Finding R 1 somewhat high, and R2 low, at 1980

led us to predict relaxation of these deviations. We tested this against the main field and SV coefficients of

undamped model GSFC 12/83 (Langel & Estes, 1985). R 1 is decreasing and R2 is increasing as predicted.

Moreover, for all orders m, (3tglm)/gl m < 0 and (_gtg2m)/g2m > 0 for both gnm and hnm. The plain

chance of such perfect correlation of signs is 1/8 for the dipole, 1/32 for the quadrupole, and 1/256 for all

eight coefficients together. This otherwise remarkable coincidence can be viewed as efficient relaxation of

the core-source field towards geologic mean values like (6) or (7).

3 STATISTICAL PHYSICS O17THE CORE-SOURCE FIELD

For simplicity, the transition from core to mantle is approximated by a sharp material interface: a

jump discontinuity in molecular material properties with radius. Both hydrodynamic andmacroscopic

magnetic stress tensors are, in contrast, treated as continuous across the interface to ensure finite divergence

of the magnetohydrodynamic stress and finite viscous and Lorentz force densities. If the fluid wets the

mantle and is of approximately Newtonian rheology, then motion of the viscous fluid vanishes at the

interface. The molecular kinematic shear viscosity of the liquid metal v is very small, about 3× 10-7 m2/s

(Poker, 1988; also see Lumb & Alldridge, 1991), so lateral motion ought not be neglected beneath a thin

viscous sub-layer. A laminar sub-layer as thin as the Ekman depth dE or the Hartmann depth dH of about 8

cm or 20 cm, respectively, need not imply that diffusion is unimportant in the sub-adjacent region, which

might be a thicker boundary layer that has not usually been distinguished from an underlying main stream.

Traditional analyses yield a thin, weak visco-magnetic boundary layer that neither absorbs

appreciable normal fluid flow nor generates much electric current (Roberts & Scott, 1965; Backus, 1968;

Ball, Kahle & Vestine 1968; Hide & Stewartson, 1972; Benton, 1981; Gubbins & Roberts, 1987; Benton,

1992). Advection of the magnetic field at the top of the main stream is thus mainly lateral; moreover, the

jump in magnetic field across such a layer is so small as to be negligible for the radial component Br. The

radial component of (4) has thus been used to interpret SV in terms of broad scale fluid flow, and

occasionally flux diffusion, at the top of the main stream. Constrained inversions of modem geomagnetic

secular change indicate a main stream speed U of about 7.5 km/yr (see, e.g., Voorhies, 1995). Such

inversions often damp out poorly resolved narrow scale motions. Yet the corresponding main Reynolds

number UCs/V of about 3× 109 is so much greater than the boundary number UdE/V of about 60 as to

suggest some ephemeral small scale motions occur in the core. Secular change caused by such motions

might be described via a pseudo-random walk of magnetic field line footpoints.
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For example, Benton's (1992) lateral flow scale of 4.8 km might describe the width of fronts between

broad regions of more uniform core flow, but it might also describe a seething mass of short-lived,

rotationally polarized hydromagnetic eddies. Such eddies would individually induce unobservably narrow

scale field variations (degrees of roughly 3,000), yet may collectively contribute to observable broad scale

SV. Statistical parameterization of this contribution could be an efficient, useful, and informative

complement to deterministic modeling.

There is a direct statistical approach to lateral magnetic transport at the base of the viscous sub-layer:

the equivalent source approach of McLeod (1996). This yields a kinematically unbiased ensemble mean

SV spectrum {Fn} (section 3.1). Whether or not main stream dynamics cause geologic time averages to

differ from such an ensemble average, observable core signal diffuses through the sub-layer and resistive

mantle. To do so, magnetic change originating deeper in the core, be it induced by eddies 2 or 22,000 km

across, induces electric current, hence excess field line curvature (V2B/[ B I ), in the sub-layer (section 3.2).

One hypothesis about such curvature is advanced and tested by observation and analysis of the emergent

core field (section 3.3). It yields an expected spatial power spectrum for the broad-scale core-sourcefield

{Rnc} similar to McLeod's rule. It does not specify spectral variance {[Rnc - {Rnc }]2} or higher

moments. Closure is sought via trial PDFs for Rnc that (i) have variances determined by the mean and (ii)

neither require nor prohibit isotropy (section 3.4).

3.1 Statistical Kinematics of the Secular Variation.

Following McLeod (1996), quasi-static lateral magnetic transport causes differential exterior secular

change AB equivalent to differential dipole moments Ad i scattered atop the main stream (r = c'). To see

this, recall that a single magnetic flux vector BodA at fixed position xo on the surface c- of the source

region acts as the point source of a dipole field with moment proportional to BodA. The magnetostatic

field at position x due to this equivalent source is well-known (see, e.g., Jackson, 1975 equation 5.64).

Infinitesimal quasi-static lateral displacement Ax of this single magnetic vector, with no change in

orientation and magnitude, causes a net change in the exterior field equivalent to a differential quadrupole

moment at xo + Ax/2. More generally, there is a magnetic vector at each position on the source-surface;

lateral transport can replace the vector at xo with an adjacent vector of slightly different orientation and

magnitude; and the change in the exterior field is equivalent to that of a differential dipole moment Ad o at

xo. Given many equivalent source changes Adi at xi on c-, the total change in the exterior field AB at [x [

> c" follows by superposition. In the continuum, differential surface magnetic moment density at x' on c"

replaces discrete Ad i as the equivalent source of exterior secular change AB(x,t), which follows by



integrationover x'. Random lateral transport of the core-source field thus produces a corresponding change

in the field above.

Elements of the dyad formed by two differential dipole moments at two well separated points

lad 1][Ad2]T may be either positive or negative. The average over a kinematically unbiased ensemble of

dyads gives zero cross-correlations, but non-zero auto-correlations. Then the expected spatial power

spectrum for broad-scale secular variation is equivalent to the spectrum for laterally uncorrelated,

randomly varying dipole moments on the shell of radius c"

{Fnc(r> c')} = C n (n + 1/2) (n + I) (c'/r) 2n+4 . (8)

This differs slightly from McLeod (1996, equation (11)) because changes in horizontal as well as radial

components of the equivalent core-source field can contribute to Fnc. (Consider rotation about the vertical

of a horizontal equivalent source on the equator). Laterally decorrelated point sources may offer the

roughest physical model of SV, yet the sum of geometrically attenuated cubic spectrum (8) over n

converges on all spheres above the equivalent source layer.

When (8) is used to describe a geologic time average, natural fluctuations [Fn(0 - {Fn}] are described

as transient lateral cross-correlations between equivalent SV sources. Failure of (8) at spatial scales

corresponding to n > N E may in part be due to persistent mesoscale cross-correlations. Moreover,

description of non-stationarity via (8) is limited to changes in amplitude C and in c" between geologic time

averaging intervals. Because C is proportional to mean square differential dipole moment {(Ad i/At)2}, it

should, by (4), tend to increase with mean transport speed and mean field intensity.

Remarks. The quasi-magnetostatic derivation of (8) is so fundamental that it does not require use of

Faraday's induction equation. Magnetic transport equation (4) obtains when (i) Galilean invariance and

Ohm's law, hence transport of non-uniform field B(r,t) by non-uniform fluid velocity v(r,t), replace

transport of equivalent sources; (ii) Ampere currents of density J are the true core-sources; (iii) Maxwell

displacement currents are filtered out via the quasi-steady approximation (VoJ = 0); and (iv) I.t and _ are

treated as if uniform scalars. For stationary reference mass density Po(r), the anelastic approximation of

Gubbins & Roberts (1987) is replaced with VoPoV = 0. Then expansion of a rising fluid parcel (Vov =

-voVlnPo > 0) tends to reduce its magnetic flux density and non-stationarity is discussed separately. At the

base of the sub-layer, omitting terms proportional to small vr (hence Vov), the radial component of (4) is

_tBr + VOVsBr = Br_rVr + (I.tcc)- 1V2rBr, (9)



whereVsdenotesthesurfacegradientoperator.

Observable changes in the core-source field caused by advection (-v.VsB r) and by downwelling

(BrOrVr) are indistinguishable from quasi-static lateral transport and confluence of equivalent sources. The

broad scale part of these changes are here described via (8). Ohmic resistance to Ampere currents appears

as magnetic diffusion in (9). Observable changes in the field due to diffusion are indistinguishable from

changes in equivalent source moments. Whether or not magnetic diffusion alters (8), as seems likely for n

> ND and during laterally correlated free decay, it is essential in the sub-layer where v falls to zero.

The lateral decorrelation used to obtain (8) by no means prohibits turbulent dynamo action at depth;

indeed, the more precisely correlated fluctuations balance diffusion, the better (8) should describe any

residual SV. Although changes in horizontal field components also contribute to (8), the normal field

component on the two boundaries (r = c, r _ oo)still determines the exterior potential field. So long as Br

remains effectively continuous across the sub-layer, so does OtBr; then jumps in Vs.BrV and (I.to'r)-1V2rBr

across the sub-layer are the same by (9). The statistical description of broad-scale SV (8) is, by continuity,

therefore applied atop the core-mantle interface.

3.2 Apparent Scale Heights and Characteristic Thne-Constants

At the top of the viscous sub-layer, v vanishes by the no-slip boundary condition. There (4) reduces

to the magnetic diffusion equation with radial component

_tBr = (latsc)'lV2rBr = 0.tcs)-l_r2B r . (10a)

,
Here/)r 2 Br denotes the jump in/)r2Br across the core-mantle interface. Clearly Br* is the core-source

correction (B r + OrV) for r < c. It vanishes at c by continuity. From (10a) alone, Br would seem

comparable in magnitude to Br(c) at a depth below c, denoted kr "I, of about [<[Br(C)]2>/<[gus/) t

Br(C)]2>] I/2, where the angle brackets denote the average over the sphere. This is an apparent scale height

because (10a) does not hold in moving fluid below c. At Magsat epoch 1980, root mean square (rms)

values for the downwardly continued broad scale radial main field and SV are about 3 gauss and 3 gtT/yr;

with gt = I.to, assuming cs = 5x105 S/m would return an apparent scale height of about 70 km.

•

Denote real, Schmidt-normalized spherical harmonic coefficnents of Br within the core by [Gnm(r,t),

Hnm(r,t)]. Omitting corrections for mantle conductivity and crustal sources, (10a) implies

(n + l)(a/c) n+2 Otgnm = (I.tcs)-1 Or2Gnm
(10b)

(n + 1)(a/c) n+2 Othnm = (_c0-1/_r2Hn m
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(This plausibility argument neither suggests nor requires a weak field deep in the core). More generally,

when the physical dependencies of [krn(t)]4 on underlying hydromagnetic interactions, and on magnetic

modes contributing to many other multipole powers Rjc(C,t) for j _ n, dominate its dependence on Rnc(C,t),

then (13) can be a useful approximation.

Statistically, for any set of PDFs assigned to (gn m, hn m) and for any set of PDFs assigned to

[Or2Gn m, Or2Hn m] at r = c, define the ratio of expectation values {Brc2(n )}/{ [Or2 Br*(n)]2 } to be krn'4;

krn is the effective radial wavenumber for the radial field configured in harmonics of degree n. As in (1 la-

d), one obtains

{Fnc} = (laOkrn2) 2 {Rnc}. (14a)

To the extent that expectation values correspond to geologic time averages, (14a) corresponds to (12) rather

than (13); indeed, only during intervals when correlated fluctuations are negligible compared with the

product of means could carefully averaged apparent scale heights {[krn(t)] 4 }- 1/4 be approximated by

reciprocal effective radial wavenumbers krn "1. This might be so when excess curvature at low degree n is

driven by narrower scale fluid motions, perhaps an ensemble of ephemeral eddies underlying the laminar

sub-layer, that depend but weakly on multipole power at degee n.

Similarly, for any set of PDFs assigned to (gnm, hnm) and for any set of PDFs assigned to [bt gnm,

bt hnm]' define the ratio of expectation values {Rnc}/{Fnc} to be Xn2. The characteristic time-constants

"rn - ({Rnc}/{Fnc}) 1/2 -- laO(krn)"2 , (14b)

remain independent of radius in a source-free exterior. For example, if PDFs assigned to (gn m, hnm) were

independent of m, and, in marked contrast to (8), SV were attributed to uniform westward drift at azimuthal

velocity -Wosin0 alone, then {Fnc} would be (nWo/C)2{Rnc }/3 and "rn2would be 3c2(nWo)'2; however, all

the Rn, Fn, and gn0 would be steady.

3.3 Constant Aspect Ratio Hypothesis

Effective radial wavenumbers krn for the core-source field can be compared with known horizontal

wavenumbers khn. To do so, introduce the square aspect ratio An -=krn2/khn 2 and rewrite (14b) as

"rn -= ({Rnc}/{Fnc}) 1/2 = gtoc2[Ann(n+l)] -1 . (15)

With no kinematical reason to prefer aspect ratios that either increase or decrease with n, constant An = A

seems the natural hypothesis to be tested.

12.



Some insight into this hypothesis is obtained by comparing radial diffusivity (Xnkrn2)" 1, which is

molecular (laa)" 1 in the anisotropic laminar sub-layer, with lateral empirical diffusivities (Xnkhn2) - 1 =

An/laC. (These are "empirical" only in that they might eventually be determined from the ratio of geologic

time-averaged observational spectra "On). The A n are amplification factors converting molecular diffusivity

into lateral empirical diffusivities. They are also indicies of anisotropy. If there were but one lateral

empirical diffusivity equal to a single lateral eddy diffusivity UL, then the single squared aspect ratio A

would equal the magnetic Reynolds number I_aUL. This describes a scale invariant diffusive anisotropy.

In contrast, the uniform westward drift example above has but one lateral eddy, yet many lateral empirical

diffusivities, and would have A n be _taWoC(3)-1/2(n+ 1)-1.

More generally, many superimposed eddies of many lateral scales khi" 1, speeds Ui(t), and circulation

times I Ui(t)khi J -1 can reconfigure flux from main field degrees j to other degrees n via (9). From a purely

kinematic viewpoint, the many lateral eddy diffusivities I Ui(t)/khiJ do not explictly depend upon this SV

degree n. Even an implicit dependence via selection rules (e.g., n - J i + j J ) becomes obscured over time

as eddies mix and remix all magnetic modes via interactions with intermediating modes. Moreover, an

ensemble mean lateral eddy diffusivity, averaged over a kinematically unbiased ensemble of ephemeral

eddies, cannot depend on the SV the eddies happen to induce. When, on average, neither radial molecular

nor lateral eddy diffusivities { l Ui(t)/khi J } depend on SV degree, they cannot be used to construct lateral

empirical diffusivities that do. The hypothesis of one such quantity, hence constant aspect ratio, remains as

the seemingly natural null-hypothesis. Of course, detailed kinematical assumption (e.g., pure westward

drift) or dynamical argumentation (e.g., strong Lorentz feedback) as to which particular eddies and

magnetic modes might eventually dominate can suggest other hypotheses.

This hypothesis is necessarily restricted to horizontal scales exceeding the thickness of the sub-layer

itself (khn" 1 >> dE). It is clearly intended for magnetic scales (n < N E, n << ND) broader than those

dominated by molecular diffusion, hence time scales long compared with sub-layer delay time (e.g., tn >>

laC_dH2). Moreover, so long as fluctuations in R n and F n are about the same magnitude as the means, a

single epoch value for a single spectral ratio (e.g., R6(tl)/F6(tl)) could easily differ from Zn by a factor of

two or more. Such natural variability ought not be mistaken for a multiplicity of aspect ratios.

Observational Check. Reliable, undamped geomagnetic field models through degree and order 12

or more are available, albeit not for the geologically long time intervals needed to determine

{Fn(t)}/{Rn(t) }. Observational values of Fn(a,t)/Rn(a,t) were, however, calculated for epochs 1960, 1970,
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and 1980 from undamped Magsat model GSFC 9/80 (Langel et al., 1982) fifteen years ago in hopes of

deducing a dispersion relation for $V. The constant aspect ratio hypothesis predicts

Xn'2 = {Fnc}/{Rnc} = (A/gtoc2)2[n(n+l)] 2; (16)

therefore, at each epoch we fitted lnA' + l_ln[n(n+l)] by least squares to the observational ln(Fn/Rn) for

degrees 3 through 12. The three resulting estimates of _ average to 1.957 + 0.156 (1o). This agrees with

the constant aspect ratio prediction 13= 2. It does not agree with the uniform westward drift example above.

The three estimates of lnA' indicate (A') "1/2 is 2,639 years to within a factor of 1.94 (20); therefore,

very recent field behavior suggests xn _ 2,640/[n(n+ 1)] years. The extrapolation of this "cn relation to the

dipole, x 1 _ 1320 yr, agrees with the observational values [Rl(t)/Fl(t)] 1t2 from GSFC 9/80, which average

to 1275 yr. The extrapolated range for the quadrupole, x2 _ 220-880 yr, exceeds observational

[R2(t)/F2(t)] I/'2, which average to 126 yr, perhaps due to a rapid rebound from diminished R2.

With this x n relation and core radius c = cm -- 3.5 Mm (from section 4), the lateral empirical

diffusivity is about 150 m2/s. With (14b), and supposing krl >_n/c to allow forced dipole decay, this xn

relation also offers an upper bound on core magnetic diffusivity. The bound, (i.ta)"1 _<30 m2/s, is uncertain

by a factor of two, as is the lower bound on core conductivity, o > 2.7x 104 S/m, obtained by assuming la =

I.to. The bound is consistent with a high conductivity liquid metallic outer core.

When emerging SV is traced to underlying fluid motion, the bound may be interpreted as a turbulent

diffusivity. To reckon molecular magnetic diffusivity, divide 30 m2/s by the effective magnetic Reynolds

number Rm* = 2A/n 2. If a molecular conductivity is 5x 105 S/m is assumed, then Rm* is 19 and square

aspect ratio A is about 92, each to within a factor of two.

Generalized Stevenson-McLeod Relations. On the constant aspect ratio hypothesis, equations (16)

and (8) at the top of the sub-layer are combined to yield

{Rnc (r) } -- Xn2{Fnc(r)} = [l.tac2/An(n+l)]2[Cn(n + l/2)(n + l)](c/r) 2n+4

= K (n + 1/2) [n(n + 1)]"1 (c/r) 2n+4

=, K [n(n + 1)]-1/'2 (c/r) 2n+4

- K (n + 1/2)-I (c/r) 2n+4

(17a)

(17b)

(17c)

for 1 < n < N E and r _>c. With K set to KM(a/c)4 and r set to a, (17c) reduces to McLeod's rule (6);

however, (17) is obtained from constant aspect ratio, instead of a form for Pn(CO),and does not exclude



dipolepower.Thisallowsmoreextensivetesting.Failureof(17)atnarrowspatialscales(n_ NE)mayin

partbeduetofailureof(16)aswellas(8).

Particularspectralforms(7)and(17a-c)areofgeneralform

IRnc(r)}= K q(n) (c/r) 2n+4 . (18)

The various q(n) approach Stevenson's (1983) relation at high n; they are approximately 2/(2n+1) and are

thus but minor variations on McLeod's rule when compared with extending it to the dipole and to

geologically long time intervals. The latter correspond to the hypothesis that, over such intervals, the core-

source dipole field at the top of the core might be exceptional compared with other multipole fields in its

nearly axial orientation, but not in its magnitude.

3.4 Statistical Core Field Hypothesis

With the expectation value of core multipole power {Rnc} given by (17), the statistical core field

hypothesis advanced here is that, over geologic time intervals, normalized core magnetic multipole power

(2n+l)Rnc/{Rnc} at radii r > c is distributed as chi-squared (Z2) with 2n+l degrees of freedom. These

particular trial probability distribution functions (PDFs) for the Rnc are

-1(x2)n- 1/2[(2n+l)Rnc/{Rnc }] = _O2n+l(_ 2) = [2n+l/2 F(n+l/2)] exp[-z2/2], (19)

where F is the gamma function, the {Rnc } are from (17), and 1 < n _<NE. By (19), standard tables giving

the probability of obtaining _2 < X2 also give the probability of finding Rnc/{Rnc} < X2/(2n+l). Note

that (19) does not postulate PDFs for each individual Gauss coefficient; moreover, {Rnc} from (17) is not a

plain exponential and does not level off at any depth.

Distribution (19) neither requires nor prohibits equipartitioning of multipole power among the various

orders m within degree n. It holds if Gauss coefficients of degree n are random samples of a population

with a zero mean Gaussian PDF of variance {Rnc(a)}/[(n+l)(2n+l)]. It can also hold when these

coefficients are not normally distributed. Indeed, there are an infinite number of PDFs for individual

coefficients of any particular degree that yield (19) (see Appendix A). Distribution (19) may thus

summarize core processes that cause fluctuations about a geologic mean magnetic energy density of

{Rnc(C)}/21a per degree, but distribute such energy abnormally among the orders within that degree due to

geometric effects. Earth rotation is an obvious source of such anisolropy.



In a dynamo, kinetic energy maintains magnetic energy against Ohmic dissipation. The Coriolis

force does no work; it does not change the kinetic energy of a fluid parcel. Rotational polarization of

(geologically) turbulent core flow might thus produce magnetic anisotropy without much deviation from

(17). Anisotropy due to motional inductive effects resembling the Coriolis vorticity effect should

distinguish axial from equatorial dipoles. For example, consider surficially geostrophic flow in the

uppermost main stream: _eVx(_xv) = 0 for bulk angular velocity _q. Then fluid downwelling implies

poleward flow. By (9), fluid downwelling draws in or attracts magnetic field line footpoints to form

regions of strong radial field (core spots); the accompanying poleward flow implies poleward drifting core

spots. This provides a flux partitioning mechanism for axial dipole formation, growth, and fluctuation

(Voorhies 1991; 1992).

This mechanism for inducing planetary magnetic anisotropy relies on the kinematic boundary

condition indicated by a rigid mantle; it might also operate where a stably stratified fluid bounds a

convecting conductor. Whether or not it indicates deviations from (17), such as persistent quadrupole

diminution (Stevenson, 1983) or a shift of magnetic energy from quadrupolar to dipolar configurations,

remains to be seen. Other mechanisms, perhaps involving a solid inner core or a thermo-chemically

heterogeneous mantle, might also partition core surface magnetic energy unequally among the harmonic

orders within a particular degree for geologic time intervals. Hypothesis (16), expectations (17), and

distributions (19) are compatible with such anisotropy.

Earth's squared dipole moment m*m is (4na3/l.to)2[Rl(a,t)/2]. Granting it is mainly from the core,

(19) predicts that 3m.m/{m*m}, which equals 3Rlc(a)/{Rlc(a)}, will be distributed as Z2 with three

degrees of freedom. The probability _ (I Z I )d IZ I of finding IZ ] in the interval [ IZ ], IZ I +dl Z I] is

(Z2)[dz2/d IZ 1]dl Z I, so (19) predicts a Maxwellian distribution of absolute dipole moments Im I. The

predicted the root mean square dipole moment is

- {re.m} 1/2 = 4na3lRlc(a)/2} 1/2/t,t° ; (20a)RMSDM

the predicted mean absolute dipole moment is

IDMI - {Ira1} = 4r_a3l[Rlc(a)/2]l/2}/I.to

= 4r_a314{R lc(a)}/3rr] 1/2/_o = (8/3rr)1/2RMSDM ; (20b)

and the most probable absolute dipole moment is (2/3)I/2RMSDM. The Maxwellian distribution for

normalized absolute geomagnetic dipole is quite compatible with an anisotropic, dominantly axial, dipole.



In followingsections,oneortwoparametersofspectralforms{Rnc}areestimatedbyleastsquares

fittingstoelementaryfunctionsofobservationalRn. By(19),normallydistributedresidualstotheRnfitted

oughtnotbeexpected;moreover,themagnitudeof theseresidualsshouldbelargecomparedwiththe

uncertaintyinRnindicatedbygeomagneticfieldmodelcovariance.Thisisbecausethenaturalvariability

of thecore-sourcefieldallowedby(19)turnsouttobemuchlargerthanformaluncertaintyestimatesinthe

lowdegreeRnderivedfromMagsatdata.ThemodestdecreaseinthenaturalvarianceoftheRnc(C)from

(19)asnincreasesfromI to12,togetherwiththeGaussianfactorin (19),suggestleastsquaresestimates

closelyapproximatemaximumlikelihoodestimates.Nonetheless,eachestimatedoesnotyieldrigorous

covarianceforparameters (K,c); stated uncertainties summarize variances caused by geomagnetic field

model and truncation selection.

4 MAGNETO-LOCATION OF EARTH'S CORE

If (17) is correct, then the two parameter fit of {Rnc(a)} to the spectrum calculated from spherical

harmonic models of Magsat data should give accurate magnetic estimates of the core radius, denoted cm,

and amplitude K. Such estimates were computed by least squares fits of spectral form (18) to observational

Rn(a) data. Specifically, In[{Rnc(a)}/q(n)], which equals [nln(cm/a) 2 + InK + 41n(Cm/a)], was fitted to

ln[Rn(a)/q(n)]. The Rn(a) data fitted were calculated from the degree 13 model GSFC 12/83 (Langel &

Estes 1985) and, to reduce aliasing of crustal fields, the degree 60 model M102189 (Cain et al. 1990).

The top three rows of Table 1.1 give the cm computed using the q(n) listed in the first column• The

second and third columns list cm computed from Rn(a ) for degrees 3 through 12; the fourth and fifth

columns list cm computed from Rn(a ) for degrees 1 through 12. The fourth row gives leveling radii c*

obtained using plain exponential form (3); the c* computed from degrees 2 through 12 are shown in

parentheses. Such omission of dipole power raises c* by about 102 km.

The top row of Table 1.1 shows that core radii determined by McLeod's rule agree very well with the

seismologic core radius of 3480 kin. The closest agreement comes from the fit of (17c) to the Rn(a ) values

from M102189 for degree 3 through 12. This is illustrated in Figure I. 1, which graphs Rn(a) (diamonds

connected by dashed line segments), the fit (solid curve with cm = 3484.5 km and KM(a/Cm )4 =

5.3649x 1010 nT2), and the extrapolation to degrees 2 and 1 (fine dashed curve). The vertical bars attached

to the fit show the 80% likelihood range deduced from _2 per 2n+l degrees of freedom (19). (These are

not errorbars attached to the data, which would be very small). As expected, two of the ten points fitted lie

just outside the 80% likelihood range (R8 and R9). The low degree extrapolation shows R 1 is greater, and

R2 less, than expected; yet both are within the 80% likelihood range.



TableI.1showsMcLeod'srule(17c)asmostaccurate(toprow)andvariation(17b)asalmostas

accurate(secondrow);evenform(7)givescoreradiiatmost1.8%abovecs(thirdrow).Thefirsttwo

valuesinthetoprowaverageto3488.2+ 10.3km(2or).Thefourvaluesintheupperleftquadrantaverage

to3489.9+ 8.6km(2o).Thelasttwocolumnsshowthatinclusionofdipoleandquadrupolepowersraises

cmbyatmost22.3km. That the effect on cm is so small (_<0.64%) is perhaps no more surprising than the

efficient relaxation of R 1 and R2 towards expectation values. The effect of the somewhat lighter weights

PDFs (19) would assign to lower degree Rn can be approximated by averaging results from degrees 1-12

with those from degree 3-12.

The fourth row of Table 1.1 shows that c* from plain exponential form (3) systematically

underestimate c s by about 200 km. It is doubtful that discrepancies this large result from crustal

contributions to the Rn(a) fitted. Indeed, coestimation of parameters describing recently advanced power

law forms for the crustal spectrum Rnx(a ) would slightly decrease, not increase, c* and cm. Perhaps

geophysically important deficiencies of (3) have been overlooked due to omission of R 1 from previous fits.

These spectral core magneto-locations are more accurate and precise than those obtained using the

frozen-flux approximation alone (Hide & Malin 1981; Voorhies & Benton 1982; Voorhies 1984). The

latter methods rely heavily upon uncertain phase information in harmonic orders m and, more importantly,

upon uncertain secular change information from either SV models or main field models at different epochs.

The spectral method allows for magnetic diffusion as well as motional induction and relies only upon the

Rn spectrum at a single epoch. These advantages reduce scatter. Some 44 frozen-flux core locations

obtained from diverse field models at various truncations of expansion (1) average to 3506.2 + 300.9 km

(la, Voorhies 1984, equation (3.21)). The twelve estimates of cm in Table 1.1 average to 3504.8 + 37.0 km

(2_). This is but 0.71% more than the seismic value.

The success of Hide's method nontheless suggests that secular change induced by main-stream fluid

motion emerges largely unaltered by a visco-magnetic boundary layer. The success of the spectral method

further suggests pseudo-random lateral magnetic transport by the main stream below, and diffusion of SV

signal out the top of, this thin laminar sub-layer. Taken together, these inductive geomagnetic data analyses

indicate a low viscosity, electrically conducting fluid core of 3.5 Mm radius without requiring seismic, tide

and nutation, gravity, or astro-geochemical data to infer core composition, liquidity, and radius.
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APPENDIX A: CHI-SQUARED FROM ABNORMAL DISTRIBUTIONS

If 2n+l independent variables xi are drawn at random from identical, zero mean Gaussian probability

distribution functions of unit variance, then the probability distribution function (PDF) for the sum of their

squares, Ei(xi )2, is well-known to be chi-squared with 2n+ 1 degrees of freedom. It is evidently less well

known that the reverse is not always true. For example, consider three independent real variables (X, Y, Z)

on the open interval (.,,,,oo) with PDFs

_OM(X ) = (2;0 -I/2 X2.exp(-X2/2) (Ala)

pD(Y) = 5(Y) (Alb)

_OD(Z) = 8(Z) (Alc)

where _o M is the bi-Maxwellian and 8 is the Dirac delta function. There is no chance of Y and Z being

anything but zero, X can be either positive or negative, and X 2 + y2 + Z 2 = X2 is distributed as

go (x2)d(x 2 ) I dx I
= _o(X2)d(X 2) = 2PM(X" ) _ d(X2)

= (2n)'1/2 (X2)I/2 exp(-z2/2) d(x 2)

= [23/2 F(3/2)]-1 (X2)I/2 exp(_x2/2) d(z2) (Ald)

where F is the gamma function. PDF (Aid) is chi-squared with three degrees of freedom.

The difference between example (A I) and the usual case of three normal distributions with equal

variance is important. With suitably normalized dipole coefficients (X --->gl0/D, Y --->0, Z --->0), (A1)

describes a dipole with a zero mean bi-modally distributed axial component, variance {(g 10)2} = 3D 2, and

negligible flit. This approximates a planetary magnetic field dominated by an axial dipolel The usual case

(with (X, Y, Z) --->(g l°/G, g 11/G' hi l/G)) describes a dipole with no preferred direction at all and seems

even less relevant to Earth than (A 1). The isotropic case, with typical dipole tilts of order tan" 1([2] 1/2) =

54.7 °, may be of interest for Uranus and Neptune; case (AI) may be of interest for Saturn (Connerney, Ness

& Acuna, 1982); intermediate distributions are potentially more Earth-like and may be of interest for

Jupiter (Connerney & Acuna, 1982).

l'T



There are an infinite number of sets of three PDFs for three independent variables which give the

distribution _2 with three degrees of freedom. To see this, consider the possibly singular distributions for

independent variables (x, y, z) on the interval (-,,*, +_)

-Px -x2/2
_l(X) = Axlxl e (A2a)

_o2(y) = Ayl y l "py e"y2/2 (A2b)

"Pz -z2/2
_o3(z) = A z Iz I e (A2c)

where (Ax, Ay, Az) are normalization constants and (Px' Py' Pz) are power law indicies which are less than

one and sum to zero. Clearly

_l'(X2)d(x 2) = 2_o(x)I dx I d(x2)
d(x 2)

, 2 "[(l+Px )/2]= Ax Ix t e'X2/2d(x2), (A2d)

while similar PDFs for y2 or z2 follow by replacing x in (A2d) with y or z, respectively. The PDF for _2 =

x2 + y2 + z2 is obtained in the usual way via

OO OO OO

_o(_ 2) = j J J _ol'(X 2) _o2'(y2) _o3'(x2) 8[_2 (x2+y2+z2)]d(x2)d(y2)d(z 2) (A3a)
000

and the fact that the offset delta-function is the inverse Lapalace transform (denoted La-1) of the

exponential of its offset

_2. (x2+y2+z)2 _ fl_, s_2 -s(x2+y2+z 2)
8[_ 2 - (x2+y2+z2)] = La-I [e ] = 2_i -io,, e e ds (A3b)

where s is the Laplace transform domain variable. Substituting (A2d) and (A3b) into (A3a), and

introducing u = x2, v = y2 and w = z2, yields

Ax'Ay'Az' io,, s_2 -(l+Px)/2 -u/2
_(_2) = l'. e La[u e ]

2rfi -l,,,,

-(l+py)/2 -v/2 -(l+pz)/2 -w/2
La[v e ] La[w e

With k x - (1 - px)/2 and

]ds .

(A4a)

-(l+Px)/2 -u/2 kx- 1 -u/2 -kx
La[u e ] = La(u e ) = F(kx)[S+ I/2] (A4b)



it follows that

' ' ' i_ s_ 2 F(kx) F(ky)F(kz)
jo(_2) = A xAyA z J e ds.

2_i -i,,o (s + 1/2) kx+ky+kz

Provided kx, ky, and kz are all positive definite and kx + ky + k z =

$j(_2) = Ax,Ay,Az, F(kx ) F(ky) F(kz) La'l[(s + 112)"3/2]

42/2
r(k x) r(ky) r(k_ z) (_2)1/2 e

= A x Ay A z F(3/2)

3/2,

(A4c)

= [23/2 F(3/2)1-1 (_2)1/2 e (A4d)

Comparison of (A4d) with (Aid) shows that {2 is in fact distributed as X2 with three degrees of freedom.

The conditions that (k x, ky, kz) are all positive definite and sum to 3/2 are equivalent to the condition that

(,Px' Py' Pz) are all less than 1 and sum to zero. There are an infinite number of triplets for (Px' Py' Pz) that

satisfy these conditions. The form of PDFs (A2a-c) is A I X I "P exp(-x2)] and is, in retrospect, one half the

chi-squared distribution with typically fractional degree of freedom (l - p) reflected about a zero mean; for

p = (1 - 2k), the corresponding A is 1/[2kF0c)].

It has been demonstrated that assigning the distribution chi-squared with 2n+l degrees of freedom

to some variable {2 does not necessarily imply that _2 is the sum of 2n+l normally distributed variables of

equal variance. It particular, there are an inFmite number of sets of three PDFs for the three degree 1 Gauss

coefficients that imply the distribution of chi-squared with three degrees of freedom for normalized dipole

power 3R Ic/{R l c }. Explict contact between (A2a-c) and PDFs for suitably normalized Gauss coefficients

is omitted for brevity. Variances of PDFs (A2a-c) are restricted by the selection of power law indicies and

are 21/2F(k + l/2)/F(k). PDFs (A2a-c) also have singularities for I > py = Pz > 0. Such PDFs may be of

interest in wave-particle physics, but are not the intermediate cases sought for describing planetary

magnetism.

Instead consider normal distributions for gl I and h 1 I. Then (Ala-c) makes it intuitively obvious

that the PDF for g 10 yielding chi-squared with three degrees of freedom for the distribution of normalized

dipole power will be a linear combination of Gaussian and bi-Maxwellian distributions. This is in fact the

case, as shown below.

2.1
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Denote [(a/c)3gl 0, (a/c)3g I 1, (a/c)3hl 1] by [x, y, z] and the variances of (x, y, z) by (ax 2, ay 2,

Oz2). The axial dipole hypothesis would have the means of y and z be zero, while isotropy of the equatorial

dipole would have ay and a z be equal. So replace (A2a-c) with distributions

a 2.Cy2 x2 + CY2]
Ox (x)dx = (3/2nV2)I/2(3/V2)[ x V2

y(y)dy = (2trey2)" 1/2 exp(_y2/2Cy2)dy

g_z(Z)dz = (2rCaz2)-l/2 exp(.z2/2Oz2)d z

exp(-3x2/2V 2) dx (A5a)

(ASb)

(A5c)

where V2 ---t_x2 + gy2 + az 2. With {2 = x2 + y2 + z2 = V2X2/3, the problem is to derive (A5a) for _o x(X)

given normal distributions (A5b-c) and

_o(_2)d(_2) = (23/2F(3/2))" I[3_2/V211/2exp[-3_2/2V2](3/V2)d(_2) (A5d)

subject to the constraint that the dipole is usually mainly axial: ax 2 >> ay 2 = Oz 2. For statstically

independent (x, y, z)

oo

_o(_ 2) = ]**_ _Ox'(X2) _0y'(y 2) _Oz'(Z2) 5[_2 - (x2+y2+z2)]d(x2)d(y2)d(z 2)
000

oo oo oo

= (2_Yt_Z)-I _0 [0 [0 _Ox'(X2)(y2z2)-I/2 exp('y2/2_y2 - z2/az2)

8[_2 - (x2+y2+z2)]d(x2)d(y2)d(z2)

(A6a)

(A6b)

or, using (A3b) and resetting u ---x2, v = y2, w = z2,

ioo _ oo

_(_2) __ (4_,2_yOzi)-I _ _ _ _ _x,(U)exp(_su)(vw)-l/2exp(_sv_v/2_y2 )
-ieo 0 0 0

exp(-su - W/az2)exp(s_ 2) dudvdwds. (A6c)

Recognizing and evaluating the Laplace transforms gives

ioo

(_2) = (4_.2_yt_zi)- 1 f . La[ _ox'(U)] La[v- l/2exp(-v/2ay2)]
-leO

La[w" 1/2exp(-w/2_z2)] exp(s{2)ds

= (2_ayCz)- 1 La" 1[La[_Ox,(u)l [F(1/2)12[(s + 1/2ay2)(s + 1/2az2)]- 1/2 (A6d)

The Laplace transforms of (A6d) and (A5d) imply

22,



(s + 1/2ay2)(s + l/2az2 )
La[_Ox,(U)] = ayaz(3/2V2 ) 1/2 [. ]1/2(3/V2) (ATa)

(s + 3/2V2) 3

In the special case ay -- a z,

s + l/2ay 2
_Ox'(X2) = ay2(3/2V2) 1/2 La-l[ ..... ](3/V 2)

(s + 3/2V2) 3/2

and the inverse transform gives

(A7b)

ay2(3/2V2) 1/2 V2 "3_y2
_ax'_X2)" = -(3/V2) [(x2) -1/2 + (x2) "1/2] exp(-3x2/2V 2) . (A7c)

2F(3/2) ay2V 2

Because x can be of either sign, _o ×(x)d× is but half _o ×'(x2)2×d× and (A7c) reduces to the linear

combination of a zero mean bi-Maxwellian and a zero mean Gaussian (A5a).

Although (A5a-c) are but one class of PDFs consistent with the distribution chi-squared with three

degrees of freedom advanced for normalized dipole power in the text, they may be of some use in planetary

and perhaps stellar magnetism. In (A5a) note that V2 - 36y 2 = 6x2 - ay 2 > 0; with t_x2 >> t_y2, the

distribution enjoys the two peaks on either side of the mean (at gl 0 = 0) that correspond to normal and

reversed axial dipole polarity, respectively. A suitable index of anisotropy, or 'tilt control parameter', for

PDFs (A5a-c) is e - [(Cx 2 - ay2)/V2], which is 1 for a purely axial dipole, zero for randomly oriented

dipoles, and - 1/2 for a purely equatorial dipole. For a purely axial dipole with 6y = <_z= 0, (A5a) would

vanish at x = 0; then gl 0 could not pass through zero and reversals would be prohibited. So e -- 1 describes

inhibition of reversals.

It is conjectured that PDFs (A5) describe the terrestrial dipole with fair accuracy. Very slow

evolution of the variances (t_x2, Oy2 _ Cz2) over geologic time is thought to reflect planetary evolution of

the boundary conditions on the outer core (and vice-versa). PDFs (A5) may also describe other planetary

dipoles (e.g., e is apparently about I for Saturn, somewhat less than 1 for Jupiter, and near zero for Uranus

and Neptune).
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Table I. 1:Estimates of Earth's Core Radius in km from McLeod's Rule and Other Forms

q(n) GSFC 12/'83 M102189 GSFC 12/83 M102189

3_<n< 12 3<n_< 12 1 <n< 12 1 <n< 12

[n + 1/2]-1 3491.8 3484.5 3501.2 3496.0

[n(n+l)]-l/2 3493.3 3486.0 3506.8 3501.6

n" 1 3511.4 3504. I 3543.1 3537.8

1 3261.4 3254.6 3208.6 3203.8

(3311.8) (3306.0)

Figure Caption

Figure 1.1 shows the multipole powers Rn(a) from model M102189 (Cain et al., 1990) for degrees 1 < n <

12 (diamonds connected by dashed line segments), the two parameter fit of McLeod's rule (16c) (solid

curve with cM = 3484.5 km and KM(a/cM )4 = 5.3649x1010 nT2) to degrees 3 through 12, and the

extrapolation to degrees 2 and 1 (fine dashed curve). Vertical bars show the 80% likelihood range from Z2

with 2n+l degrees of freedom and are attached to the theory (solid curve), not the data. As expected, two

of ten powers fitted lie outside this range. R 1 is greater, and R2 less, than predicted, but both are within

their 80% likelihood ranges.
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